Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

EXPLORing exosomes for the treatment of acute kidney injury.

blue Cryptochromes Review
Kidney Int, Sep 2021 DOI: 10.1016/j.kint.2021.05.039 Link to full text
Abstract: Exosomes are emerging as a novel drug delivery system for the treatment of numerous diseases, including acute kidney injury. In this issue of Kidney International, Kim et al. use a novel optogenetically engineered exosome technology, "EXPLOR," to deliver the exosomal repressor of nuclear factor-κB into mice before and after renal ischemia-reperfusion. They report that these exosomes downregulated renal nuclear factor-κB signaling and ameliorated acute kidney injury. This study deserves attention for its significant scientific and potential clinical value in acute kidney injury.
2.

Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury.

blue CRY2/CIB1 HEK293T mouse in vivo Signaling cascade control
Kidney Int, 27 May 2021 DOI: 10.1016/j.kint.2021.04.039 Link to full text
Abstract: Ischemia-reperfusion injury is a major cause of acute kidney injury. Recent studies on the pathophysiology of ischemia-reperfusion-induced acute kidney injury showed that immunologic responses significantly affect kidney ischemia-reperfusion injury and repair. Nuclear factor (NF)-ĸB signaling, which controls cytokine production and cell survival, is significantly involved in ischemia-reperfusion-induced acute kidney injury, and its inhibition can ameliorate ischemic acute kidney injury. Using EXPLOR, a novel, optogenetically engineered exosome technology, we successfully delivered the exosomal super-repressor inhibitor of NF-ĸB (Exo-srIĸB) into B6 wild type mice before/after kidney ischemia-reperfusion surgery, and compared outcomes with those of a control exosome (Exo-Naïve)-injected group. Exo-srIĸB treatment resulted in lower levels of serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin in post-ischemic mice than in the Exo-Naïve treatment group. Systemic delivery of Exo-srIĸB decreased NF-ĸB activity in post-ischemic kidneys and reduced apoptosis. Post-ischemic kidneys showed decreased gene expression of pro-inflammatory cytokines and adhesion molecules with Exo-srIĸB treatment as compared with the control. Intravital imaging confirmed the uptake of exosomes in neutrophils and macrophages. Exo-srIĸB treatment also significantly affected post-ischemic kidney immune cell populations, lowering neutrophil, monocyte/macrophage, and T cell frequencies than those in the control. Thus, modulation of NF-ĸB signaling through exosomal delivery can be used as a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
Submit a new publication to our database